UNCLASSIFIED

Geology and Mineralogy

This document consists of 31 pages, Series A

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

THE FLUORAPATITE SYSTEM OF EQUILIBRIA IN THE CONDITIONS OF FORMATION OF SEDIMENTARY ROCKS

By A. V. Kazakov

Source: Akad. Nauk SSSR, Trudy Instituta Geolog. Nauk, vyp. 114, Geol. Ser. (No. 40), p. 1-21, 1950

Translated by V. L. Skitsky

April 1951

Trace Elements Investigations Report 385

This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It is not for public inspection or quotation.

USGS - TEI-385

GEOLOGY AND MINERALOGY

Distribution (Series A)		No. of copies
American Cyanamid Company, Winchester		1
Argonne National Laboratory	0 0	. 1
Atomic Energy Commission, Washington	5 6	. 2
Battelle Memorial Institute, Columbus		. 1
Carbide and Carbon Chemicals Company, Y-12 Area		. 1
Division of Raw Materials, Albuquerque		. 1
Division of Raw Materials, Butte		. 1
Division of Raw Materials, Denver		. 1
Division of Raw Materials, Douglas		. 1
Division of Raw Materials, Hot Springs		1
Division of Raw Materials, Ishpeming	• •	. 1
Division of Raw Materials, New York		. 6
Division of Raw Materials, Phoenix		
Division of Raw Materials, Richfield		. 1
Division of Raw Materials, Salt Lake City	• •	. 1
Division of Raw Materials, Washington	• •	. 3
Division of Research, Washington		. í
Dow Chemical Company, Pittsburg		. 1
Exploration Division, Grand Junction Operations Office.		
Grand Junction Operations Office		
Technical Information Service, Oak Ridge		
Tennessee Valley Authority, Wilson Dam		
U. S. Geological Survey:	• •	
Alaskan Geology Branch, Washington		. 1
Fuels Branch, Washington		· 1
Geochemistry and Petrology Branch, Washington		. 6
Geophysics Branch, Washington		
Mineral Deposits Branch, Washington		
E. H. Bailey, Menlo Park		
K. L. Back, Denver		
J. R. Cooper, Denver.		
N. M. Denson, Denver		
C. E. Dutton, Madison		
R. P. Fischer, Grand Junction		
L. S. Gardner, Albuquerque.		
M. R. Klepper, Washington		•
A. H. Koschmann, Denver		
R. A. Laurence, Knoxville		
D. M. Lemmon, Washington		
J. D. Love, Laramie		_
R. G. Petersen, Plant City.		
R. J. Roberts, Salt Lake City		
Q. D. Singewald, Beltsville		
J. F. Smith, Jr., Denver.		
R. W. Swanson, Spokane		
A. E. Weissenborn, Spokene.		
R. E. Van Alstine, Mashington		
TEPCO, Denyer		
		_
TEPCO, RPS, Washington		o J
(Including master)		69
		0)

CONTENTS

	roduction	21 21 30 21 21 30
	ILLUSTRATIONS	
Figure 1. 2. 3. 4.	System of the equilibria of CaO-P ₂ O ₅ -HF-H ₂ O at 25°C. in the neutral and alkaline fields	ge 22 23 24 28
Table 1. 2. 3. 4. 5. 6.	Data on phosphorus and fluorine	2 9 0 5

TRANSLATOR'S ABSTRACT

As part of unified research on the behavior of the fluoride ion in sedimentary rocks, the present study deals with the system CaO-P₂O₅-HF-H₂O at 25°C. under conditions of sea sedimentation. The precipitated phases, their fields of crystallization and stability, the fluorine-phosphorus coefficient, and the isomorphism of fluorhydroxyl ions in the apatite lattice are considered and illustrated by orthogonal projections. The results lead to conclusions on fluorapatite sedimentation on phosphate shelves, with its consequent fixation of fluorine, expressed in the form of an average annual balance sheet for the processes involved.

V.L.S.

THE FLUORAPATITE SYSTEM OF EQUILIBRIA IN THE CONDITIONS OF FORMATION OF SEDIMENTARY ROCKS 1/

Вy

A. V. Kazakov

INTRODUCTION

The fluorine (F) of sedimentary rocks and natural waters has recently attracted increasing attention. There is a growing interest in its chemistry and geochemistry. The causes are both practical and theoretical. Workers in sanitation and hygiene consider as one of their problems the purification of drinking water from an excess of fluor-ion, dangerous to the human organism. In zootechnics a method is gaining application for using a fluorless phosphate of calcium ("feed precipitate") in the feeding of animals.

The phosphate industry has begun to employ a thermal process for removing fluorine from phosphorites by replacing the fluor-ion in the apatite lattice by a hydroxyl group. This gives hydroxylapatite which is well assimilated by plants.

^{1/} A co-editor of this paper is A. G. Bergman, Ph.D. in chemical sciences.

It has been proved very recently that there is danger to the human body not only in an excess of fluorine in drinking water (a content of more than 2 mg/lt.of fluorine produces tooth decay, a spottiness of the enamel), but also in an insufficiency of it. Evidence establishes that the optimal content of fluorine in drinking water must be about 1.1 mg./lt. To obtain this content, the practice was started beginning with 1945 to introduce into drinking water deficient in fluorine (e.g. Lake Michigan and other sources) some fluorine in the form of sodium fluoride (the towns Newberry, Ottawa, etc.) sufficient to bring the content to 1.1 mg./lt. F.*

^{*} Such a content seems too high - Translator.

In very recent years a process has come into use of fluorining organic compounds with a view to obtaining plastics non-inflammable and non-soluble in ordinary solutions, especially resistant dyes, and so forth.

In soil-science and agricultural economics fluorine may be useful in combating pests. In the lithology of sedimentary rocks fluorine has proved an interesting index of phosphatic and non-phosphatic facies. Finally, fluorine is an important element forming minerals in the realm of metamorphic rocks (hypotherms, pneumatolysis, etc.) and relatively easily replaces isomorphically the hydroxyl groups.

All these considerations have prompted us to conduct a series of experimental investigations, which have made it possible to gain a more precise knowledge on the behavior of fluor-ion in sedimentary rocks, namely, the ways of its migration, dispersion, concentration, and formation of minerals.

Our experimental research on the balanced fluorapatite system and on the isomorphism of the hydroxylfluoride ion was carried out in close association with G. A. Markova, who directed the analytical work.

The experiments on the fluorite systems were done with the direct participation of E. I. Sokolova and A. Z. Vainshteim, of the Laboratory for synthesis of minerals of sedimentary rocks, Institute of Geological Sciences (IGN), Academy of Sciences of the U.S.S.R.

The general direction of the work, analysis of experimental data, and preparation of the present paper were made by A. V. Kazakov.

I. GEOCHEMISTRY OF FLUORINE

1. Data on fluorine and phosphorus

The history of the fluorine which reaches the sea basins is connected on the one hand with the flow of surface waters and on the other hand with the expulsion of fluorine compounds from the interior of the earth by volcanic eruptions. The migration of the fluor-ion carried by water flow is most intimately related to phosphorus (phosphate-ion); therefore we give in Table 1 some data on phosphorus and fluorine, of interest to us.

Conclusions

Biological entities (plants, animals), being usually concentrators of phosphorus, avoid the accumulation of fluorine in their organs. This observation applies particularly to some seaweeds (lithothamnia), which can be called in this respect fluor-filters. Such avoidance also explains the fact that the mineral part of a living bony substance consists mainly of hydroxylapatite. The bony skeleton of an animal is subject to fluoridation only after the animal's death.

The content of fluorine in cores from a drill hole near the town of Kazan' (sediments C3, P1, and P2), when calculated in percentages of weight, was on the average as follows:

	Percent	Average for	
Dolomites	. 0.025	10 samples 7	
Limestones	. 0.023	9	V. V. Danilova,
Anhydrides	. 0.014	7	1949
Gypsum	. 0.012	5 J	
Clay shales	. 0.010	0000	Shepherd, 1941

^{3/} This applies also to the fluorine compounds of volcanic origin which reach the sea basins one way or another.

Table l.--Data on phosphorus and fluorine

Sample no.	Substance	% P	% F	100 x % F % P ₂ 0 ₅	Author, year
	,	I. BIC	OLOGICAL EN	TITIES	
1	Seaweeds (Lithothamnia)	to 2.0:10 ⁻¹	x:10 ⁻⁸	approx. 0.0000 x	
	Mustard f	amily			
2 3	Turnip Cabbage	8:10 ⁻¹ 7:10 ⁻¹	1.0:10-4	0.027 0.032	% of living weight; Vinogradov, 1932
	Leguminou	s plants			
4 5 6	Lentil Beans Bone, keratin	5:10-1 x:10-1	1:10 ⁻³ 2:10 ⁻³	0.320 0.904	
Ŭ	(of living organisms)	CMD own	Cast own	from 2.202 to.0.904	
		. II	. soils 1/		•
7	Soils	8.0:10 ⁻²	fr.1:10 ⁻² to 3:10 ⁻²		Fersman, 1933, 253
			to 3:10 ⁻²		Vinogradov, 1945
		III,		JST •	
	Earth's crust (atmosphere, l lithosphere to of 16 km.)	nydrosphere,	2.7:10 ⁻² 2.6:10 ⁻² 8.0:10 ⁻² 1.0:10 ⁻¹	9 . 64	Clarke, 1920 Fersman, 1932 Vernadskii, 1925-1930
		IV. CF	CYSTALLINE F	ROCKS	
9 10 11 12	Basalts Granites Peridotites Cryst, rocks	2.0:10-1 1.0:10-1 6.1:10-2	- 5	}	Clarke, 1920
13	as a whole Granitic pegmatites	1.3:10 ⁻¹ 5.0:10 ⁻²	9*10 ⁻²	79.0	Fersman, 1933, 282

^{1/} The average content of fluorine in the soils of U.S.S.R. (average from 46 samples) is: 2 x 10⁻² percent (according to Vinogradov, Danilova, 1948).

(TABLE 1 continued on next page)

Sample No.	Substance	% P	% F	100 x _ % F % P ₂ 0 ₅	Author, year
٦),	Clare slates	V 17 1.010=2	• SEDIMENTA	RY ROCKS	
15	Sandstones	3.5:70-2		ac ac	a 3
14 15 16 17	Clays, slates Sandstones Limestones	1.7:10-2		 >	Clarke, 1920
17	Sedim. rocks	6.5:10 ⁻²			
1	as a whole	6.5:10-2)	
		•	VI. WA	TERS2/	
18	River waters	x:16 ⁻⁶	approx. 2.0:10 ⁻⁵	approx. 200	
19	Sea waters of),	<u> </u>	Vinogradov,
20	normal salinity Relict basins	5.0010	1.0%10-4	870 to 3300	1938

Table 1.--Data on phosphorus and fluorine (continued)

An increase of concentration of fluor-ion in the waters of drying ("relict") basins and a related increase in the total content of fluorine in the bottom sediments occur, naturally, also in sweetwater continental basins. Thus, E. S. Zalmanson determined in 1947 the content of fluorine in the bottom sediments of the western half of Lake Balkhash as being of the order of 4.2 x 10⁻² percent, and in the saliferous eastern part of this lake as 9.8 x 10⁻² percent.

Of considerable interest from the standpoint of lithologic facies and geochemistry is the so-called "fluorine-phosphorus coefficient" of rocks and natural waters: $\% F/\%P_2O_5$. According to Clarke (1920) and Berg (1932), this coefficient for the earth's crust in general is on the average:

$$\frac{2.65 \times 10^{-2} \% F}{1.2 \times 10^{-2} \% P \times 2.29} = 0.096.$$

Namely, it almost corresponds to the fluorine-phosphorus coefficient for fluorapatite (0.0893).

The fluorine-phosphorus coefficient for soils (averaging from 0.055 to 0.11) is also close to these figures. With the small value of

the fluorine-phosphorus coefficient for soils, the situation appears at first glance paradoxical. But it can be explained by the known hydrolysis of fluorapatite in soils, brought about by the drainage of atmospheric waters. In this process, according to our experimental findings (see below), the fluorapatite disseminated in soils partly pushes the fluor-ion out into the drainage waters and replaces it by a hydroxyl-ion; meanwhile fluorine is carried away by the water flow.

For granitic pegmatites, usually enriched by fluorite and other minerals containing fluorine, the fluorine-phosphorus coefficient is considerably higher, increasing up to 0.79 according to E. A. Fersman (1933).

For fresh surface-waters the fluorine-phosphorus coefficient rises still further, reaching about 2.0 or more, on the average.

For ocean water the fluorine-phosphorus coefficient attains values of the order of:

$$\frac{1.0 \times 10^{-4} \% F}{5.0 \times 10^{-6} \% P \times 2.29} = 8.70$$

In ancient or "relict" sea basins the coefficient reaches still higher values.

2. Minerals containing fluorine

Table 2 gives data on 34 known minerals containing fluorine.

Its examination leads to the following conclusions:

(a) The predominant majority (26) of the minerals containing fluorine are related to processes of the type of pneumatolysis and hypotherms, in which the fluor-ion is replaced isomorphically by the hydroxyl ion.

7

- (b) Only 6 minerals are genetically related to magma.
- (c) Four minerals are directly connected with vulcanogenic processes.
- (d) Only two minerals--fluorite and fluorapatite--are genetically related to sea sediments of normal salinity at an early stage of salinification, and three minerals--fluoborite, schairerite, and sulfohalite--to processes of advanced halogenesis (salt lakes and drying "relict" basins).

We shall concern ourselves in the present paper principally with the migration of fluor-ions in sea sediments.

,		(12				
	Conditions of formation			Magmas, pneumatolysis (pegmatitic veins, metamorphic rocks)	<u>-</u>		Granite, gneiss		_	Depth pneumatolysis	
lorine	Specific gravity			e		2, 75 - 2, 97		2,9 - 3,1	-		
2Natural minerals containing fluorine	Optical index	CATES	micas	Nm = 1,553	Mg Fe	Ng from 1, 630 to 1, 677 Np from 1, 580 to 1, 623	Ng 1. 733	74 4 i	ld garnet	0 0	
Natural minere	System	ALUMINO-SILICATES	Group of lithium micas	Monoclinic	Group of micas Mg		Monoclinic	Monoclinic	Group of topaz and	Orthorhombic	
Table 2.	Mineral and its formula	°	<u>a) G</u>	Lepidolite KLiAl ₂ Si ₃ 09(OH,F) ₂		Phlogopite KMg ₃ AlSi ₃ 0 ₁₀ (OH, F) ₂ Biotite K(Mg, Fe ^{**}) ₃ AlSi ₃ 0 ₁₀ (OH, F) ₂	Lepidomelane KFe°°3Fe°°°Si ₃ 0 ₁₀ (OH, F) ₂	Tsinnval'dite K ₂ Lig/Mg, Fe··)g/Al, Fe···) ₄ Si ₆ 0 ₂₀ (OH, F) ₄	19 (3	Topaz Al ₂ Si0 ₄ (OH, F) ₂	Vesuvianite (SiO ₄) ₅ AI ₂ AXOH, FXCa, Mg, Fe) ₆
	Sample no.				-	01 m	4	ശ	-	9	٢

13

Table 2, -- Natural minerals containing fluorine (continued)

							13							
Conditions of formation	an.	tolys:	stones and lavas			_	Magmas, pneumatolysis, therms; sedim, rocks		Metamorphic rocks, veins			In granites together	Pheumatolysis (with	topate, being
Specific gravity	THE CHONDRODITE GROUP	3,1 - 3,2	3,1 - 3,2	00 00 00 00 00 00 00 00		-	64 °°		3,07 - 3,14	3,44 = 3,8	f ambly gonite	3,05 - 3,11	ო	2,3 - 2,5
Optical index	OF	Ng = 1,590 $Np = 1,563$	Ng = 1, 62-1, 64 $Ns = 1, 59-1, 60$	1 11 11	PHOSPHATES	of apatites	E = 1,630 W = 1,633	wagnerite	Ng = 1,582 Np = 1,569	1,65-1,68	aluminophosphates - Group of	0 0	0 0	9
System	SIUM FLUOR-ORTHOSILICATES	Orthorhombic	Monoclinic	Orthorhombic Monoclinic	III, PHOS	a) Group of	Hexagonal	b) Group of	Monoclinic	Monoclinic	Group of alumino	Triclinic	Orthorhombic	Orthorhombic
Mineral and its formula	II, MAGNES	Norbergite $Mg_2Si_0{}_4Mg(F,OH)_2$	Chondrodite 2Mg2Si04Mg(F,OH)2	Humite $3Mg_2Si0_4Mg(F,OH)_2$ Clinohumite $4Mg_2Si0_4Mg(F,OH)_2$			Apatite Ca ₅ (PO ₄) ₃ (F, OH)		Wagnerite Mg3P208Mg(OH,F)2	Triplite R. 3P ₂ 0 ₈ R(OH, F) ₂ , where R = Fe, Mn, Ca, Mg	(2)	Amblygonite AlPO4(Li, Na)F	Herderite (Ca, Be) ₂ PO ₄ (F, OH)	Wavellite $\mathrm{Al}_3(\mathrm{PO}_4)$ 4OH, F) $_3$ 5H $_2$ 0
Sample no,		∞	G	10			12	•	13	14		15	16	<u> </u>

14

Table 2, -- Natural minerals containing fluorine (continued)

	*			Ė	, 41.y				-	14				S				
	Conditions of formation		-	Hydrotherms, vol-	Inclusion in fluorspars,		·	Volcanic tuff near	Pegmatites		Pneumatolysis, together with $\mathrm{Sn0}_2$	_	•	Pneumatolysis, veins in gneisses and granites			Together with	Weathering of cryolite
nannea)	Specific gravity			3,01 - 3,25	2,97 - 3,15	6,10		2,96	5,7 - 5,9		2,17		3 .	2,95 - 3,00	2,84 - 2,90	° 88 88	2,75	2, 98
containing ituorine (condinced)	Optical index	FLUORIDES	rite and sellaite	1,434	W = 1,378	9	of oxifluorides	W = 1,509	7 E	Hydrates	1, 490	COMPLEX FLUORIDES	cryolite (waterless)	Ng = 1,340 NP = 1,338		 	54	1,413
Natural mimerars come	System	IV. SIMPLE	a) Group of fluorite	Cubic	Tetragonal	Tetragonal	b) Group	Hexagonal	Hexagonal	C) Hy	Orthorhombic	V. COM	Group of	Monoclinic	Tetragonal	Monoclinic	Monoclinic	Monoclinic
1 adie 2, Natui	Mineral and its formula			Fluorite CaF ₂	Sellaite MgF_2	Tizonite (Ce, La, Di)F ₃		Nocerite 2(Ca, Mg)F ₂ (Ca, Mg) ⁰	Fluocerite (Ce, La, Di, V) ₂ 0F ₄		Fluellite AlF3*H20			Cryolite 3 NaF AlF 3	Chiolite $2NaF \cdot A1F_3$ (or $5NaF \cdot 3AIF_3$)	Prosopite Ca(F,OH)2°2AKF,OH)3	Gearksutite CaF2 • Al(F, OH) 3 • H20	Pachnolite NaF°CaF ₂ •AlF ₃ ·H ₂ 0
	Sample n o °		•	18	19	20	•	21	22		23	-	•	24	25	26	2.7	

Table 2, -- Natural minerals containing fluorine (continued)

naad)	Conditions Specific gravity of formation	2,55 Together with	2,71	.	Pneumatolysis, fumaroles		2,89	2,612	2,69 Lake salts,	3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Lable 2, Natural minerals containing linorine (continued)	Optical index Sp	1, 43	1,46 - 1,49	CATES	6 0 d	LOGENIDES	\$ 0	8 0	0	
minerals contain	System	Cubic	H ₂ 0 Monoclinic	VI, FLUOSILICATES	Cubic	VII. FLUOHALOGENIDES	Hexagonal	Trigonal	Cubic	
Lable 2, senatural	Mineral and its formula	Raistonite (Na $_2$ Mg)F $_2$ •3Al(F, OH) $_3$ •2H $_2$ 0	Creedite 2CaF2 *2A1(F,OH)3 * CaSO4 *2H20		Hieratite 2KF·SiF4	-	Fluoborite $3Mg0 \cdot 3B_203 \cdot 3Mg(F, OH)_2$	Schairerite Na ₂ SO ₄ , Na(F, C1)	Sulfohalite 2Na ₂ SO ₄ ·NaCl·NaF	
- '	Sample no.	29	30		31		83 83	င်း	34	

II. CONDITIONS OF THE FORMATION OF FLUORAPATITE IN SEDIMENTARY ROCKS

3. The system CaO-P₂O₅-HF-H₂O

Introductory remarks

The present investigation of the four-component system CaO-P₂O₅-HF-H₂O is a natural continuation and expansion of our previous work on the tri-component system CaO-P₂O₅-H₂O (Kazakov, 1937), carried out by introducing an additional component, the fluor-ion. As should have been expected theoretically, three new precipitated phases are obtained in this more complex system:

Fluorite CaF₂ Fluorapatite $Ca_5(PO_4)_3F$ Fluor-hydroxylapatite $Ca_5(PO_4)_3(F_3OH)$

Naturally, each of these new phases has its own fields of crystallization and stability.

From the methodological standpoint this investigation proved to be more complicated than the study of the tri-component system $CaO-P_2O_5-H_2O$. First of all, attention must be called to a number of analytical difficulties due to the small amounts of P_2O_5 and partly of F.

In the extreme alkaline fields of the system the equilibrated concentration of P_2O_5 declines to an infinitesimal value of the order of 0.005-0.001 mg./lt. P_2O_5 . To obtain reliable results in such cases it is necessary to employ 5 to 6 liters of equilibrated solution even when applying the good colorimetric method of Tsinsadze with the use of an electrophotocolorimeter. This quantity requires in turn using large containers (5 to 10 liters in capacity and treated with paraffin) for the reactions;

conducting the work with oil or mercury locks on the mixers, under conditions of all possible sterilization and of double distillation, for the prevention of pollution; treating the dry residue, obtained by evaporation, with hydrogen peroxide before the determination of P_2O_5 ; and so forth.

The fluorine was determined according to Penfield (by elimination), with a subsequent titration with thorium nitrate. In the case of small concentrations of CaO (less than 5 mg./lt.), controlling determinations were made by the nephelometric method.

To obtain more crystallized sediments and a balanced state of the system, the first phase of the process (mixing the reagents) was made to last from 30 to 50 hours. The second phase of the process--decrease of residual oversaturation ("a seasoning" period in each experiment)-- lasted from 1 to 2 months, with a systematic control of the liquid phase with respect to pH and P_2O_5 . Moreover, the experiments themselves were conducted by two methods, which allowed studying the onset of equilibrium in two ways, with respect to dissolution and with respect to crystallization. It is proper to mention here that the second method is more reliable because the process of dissolution not infrequently ceases long before the onset of equilibrium in the case of exceedingly dilute solutions. We employed principally the method of slow crystallization, mostly at a rate of about 5 mg./lt. P_2O_5 per hour. The reagents were:

- (a) lime water Ca(OH)2;
- (b) orthophosphoric acid H3POh.aq;
- (c) the source of fluorine was mostly NaF.

Method of mixing reagents

In most cases the solutions $Ca(OH)_2$ and $H_3PO_{\downarrow\downarrow}$ were poured simultaneously at a definite given speed from burets (or automatic-dosage instruments) into a container with a mixer. For a good formation (crystallization) of precipitated phases, we ordinarily used slow crystallization at a rate of the order of 5 mg./lt. P_2O_5 per hour. Fluorine (as NaF or HF) was mostly introduced together with $H_3PO_{\downarrow\downarrow}$.

The mixing of reagents (the first phase of the reaction) usually continued from 24 to 100 hours; the second phase of the reaction (holding off the system until equilibrium) lasted mostly about one month.

The precipitated phases were controlled by ordinary methods of chemical analysis and of crystal optics; in a number of cases the sediments were studied by techniques of X-ray structural analysis and of thermal analysis.

The system CaO-P₂O₅-HF-H₂O investigated by us has significance not only in interpreting the geochemistry of fluorine in sedimentary rocks and the origin of sedimentary fluorapatite and fluorite, but also in questions of agrochemistry, the physiology of phosphate feeding of plants, and the chemistry of soils. Enthusiasm over the theory of the "absorbing complex" in soil sciences has in a number of cases obscured the problem and unfortunately has retarded the application of the theory of phase equilibria within the ranges of low concentrations for the study of soil processes.

The results of our experiments are summarized in table 3 (59 experiments) and table 4 (27 experiments). In both tables the data are arranged in an order from the weakly acid to the extremely alkaline fields.

1	Serial	Concen		gents, Mg/l	P	uIn.	Given CaO:	ratios	Rapidity of crystallization	"Seasoning"		quilibrat	ted liquid PRECIPITATED PHASES											
1				F	soli	d.liquid		mg/l	mg/1 P ₂ 0 ₅ per/hr					pН	d Cen	d Pan-	% F					/CaO	, % F	Formulas
1271 1.05:1 1.05:2	-	2	3),	-		7	.8	0	10	7.7		13	7.11		-					· · · · · · · · · · · · · · · · · · ·			
Sylin Syli				+	-		-	-	9	10		12	1)	14	17	10	7.1	10	19	1 20	- 21	- 22	2)	24
Second Column Second Colum						-							0				0	0.58				1		Ca ₃ P ₂ O ₈ ·H ₂ O + + CaHPO ₄ ·2H ₂ O
267/17 598 1077 0 1.11	49/II	548 548	1437		10					36	39.3	81.5					3.5	10.7						12 - 13 - 1
10 10 10 10 10 10 10 10	227/II	548	1437	1				1	4	17	32.0	56.0	1	6.58	49.18	43.23	1 1 2 2				100.48			n n n n n n n n n n n n n n n n n n n
1. 1. 1. 1. 1. 1. 1. 1.	28/II	548	1437	1				1		58	32.0			6.35				1						"
1.00	134						1	1					1			42.55			6.32		99.72			
272 2000 100 6 7 13.1 5.70 0.10 7.30 (5.39) 39.60 0.55 0.65 7.74 99.56 99.12 1.250 0.65 1.254 0.65 1.255 0.65 1.254 0.65 1.255 0.255 0.65 1.255 0.65 1.255 0.65 1.255 0.255 0.255 0.255 0.255 0.2	76	1294					1.04:1	1	5.7	32	16	9.4		7.10	51.51	39.23		0.07	8.01	100.18	99.63	1.265	3.34	$Ca_3P_2O_8 \cdot H_2O + CaF_2$
182 - 2000 100										15				7.20	49.72	44.52				100.81	100.81			Ca ₃ P ₂ O ₈ ·H ₂ O
133 2000 1000 5 600 11.5 31.5 5.7 0 6.7 7.10 31.5 5.7 0 6.8 5.9 4 1.5 5.7 0 6.8 1.5	132			100			35.5	1			14.0			7.15	51.34	39.02		B and a second second			99.00		4.89	Ca5(FO4)3 · (F,OH)
190	133		2000	50				1	8	60	11.5	3.15	0.25	7.10	51.30	40.65	0.95		6.48	99.38			2.33	11
33.1 2000			1 2 2 2 2						6				0		52.94		(50)			99.28				Ca ₅ (PO ₄) ₃ OH
1377	131				-				50				15.4			33.92		1	8.98	103.74				$Ca_5(PO_4)_3F + CaF_2$
Total 11/2 13/4 32 10 0.1.6e 1.20.11 10 5.5 33 6.6 0.60 0.00 6.0 8.00 1.20.22 3.00 0.1.01 10.0.25 9.0.25 1.20.11 1.20.22 1.20.22 3.00 0.1.01 10.0.25 9.0.25 1.20.22 1.20.22 3.00 0.1.01 10.0.25 9.0.25 1.20.22 1.20.22 3.00 0.1.01 10.0.25 9.0.25 1.20.22 3.00 0.1.01 10.0.25 9.0.25 1.20.22 3.00 0.1.01 10.0.25 9.0.25 1.20.22 3.00 0.1.01 10.0.25 9.0.25 1.20.22 3.00 0.1.01 10.0.25 9.0.25 1.20.22	137						7 71 7			30				7:5	52.51	39.63				99.67				Ca ₅ (PO ₄) ₃ (F,OH)
00 914 1258 3000 9 0-0-23 - 10 5.1 18 14.1 0.090 6.0 8.11 19.93 33.92 3.00 0 14.07 100.50 9-1.1 10.50 99.11 11.1 11.1 11.1 11.1 11.1 11.1 11	77			52		0-1.55	1.20:1	10	5.5					8.00	52.15		1.64			99.84			4.55	11
148 2000 350 8 17,4 0.10 14,6 8,09 90.57 37.22 5.50 0 8,16 101.64 99.25 14,8 12 17.7 12.00 25	80		1258	2000	9	0-0.23		1		18	14.1	0.090	6.0	8.11	49.81	33.92	3.00	1	14.07	100.80			8.85	Close to Ca ₅ (PO ₄) ₃ F
195 6 2000 5 7	147			300	1									7.85	50.03	36.08	4.50	0		101.30	99.41		12.5	$Ca_5(PO_4)_3F + CaF_2$
195 6 2000 5 7				286			1			V								0						Cas(POA)aF
152	136			5						20	20.0	0.20	0.08	7.6	53.54	39.24	0.15		7.13	100.17			0.39	$Ca_5(PO_4)_3(F,OH)$
150 2000 500 20	103			2000	1		1	1	3.13						53.31	32.87	3.00				99.52			Ca ₅ (PO ₄) ₃ F
150	152			500			2.5	1	<u> </u>						49.28	29.33			14.57		98.69			" tas(104)3r + car2
191	150			300				1			25.5					35.77	5.98		9.74	101.79	99.79	1	16.7	n
151 - 2000 350							1			You have been a second		14.6.6.6.6						0.36						
161					1											32.01	5.88	Ö	13.10	101.46	98.00		18.4	11
100. 727 1296 2000 9 0-0.094 5.8811 10 0.27 24 44.8 0.005 7.5 9.16 168.84 28.58 0.51 15.66 1.20 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	161			200					•		39.2	1	7.5			34.59	3.24				98.89			Ca ₅ (PO ₄) ₃ F
154			1057				3.88:1	10		24				9.00	48.84	28.58			19.68					
155	43/II		1							27	44.8	0.015	0	1 9.24	58.06	40.20	0		5.78	99.04	99.04		1	Ca5(PO4)3OH
145 1/							1									33.22						2.50		$Ca_5(PO_4)_3F + CaF_2$
141	143 1/			- 1	4		!	1							1								1	H .
120	144				2							1												
Section Sect									8												I Partie Tales 1			н
105 906 1657 0-0.304 2.24:1 20 0.75 7 85 0.049 12.1 9.90 55.99 30.63 4.03 0.44 12.73 101.78 99.94 16.8 " 104 727 1258 2000 9 0-0.055 3.92:1 20 0.28 7 107 0.013 13.4 9.60 51.74 25.83 5.25 0.55 18.69 102.04 99.85 20.5 " 110 1000 2000 2000 10 0-0.170 5:1 10 4 16 118 0.020 12.0 9.7 55.23 40.08 0 5.98 99.29 99.29 0 Cas(F04)sOH 135 1000 2000 2000 2000 9 0-0.173 5:1 20 4.4 22 347 0.010 6.3 55.14 29.15 2.87 0.61 14.69 100.76 99.56 9.86 Cas(F04)sF + Cas(F04)sOH 185 5000 1250 50 10 566 0.040 5.80 52.85 28.52 3.70 1.07 14.50 100.44 99.89 13.07 182 1.000 2000 2000 875 50 10 644 6.0 52.84 28.27 2.42 0.71 16.07 99.91 98.75 8.55 11.72 Cas(F04)sF + Cas(F04)sF	52/11						1.40:1			37	73.1	0.031		9.02	54.07	40.07	0		5.54	99.68	99.68			Ca ₅ (PO ₄) ₃ OH
104 727 1258 2000 9 0-0.055 3.92:1 20 0.28 7 107 0.013 13.4 9.60 51.74 25.83 5.25 0.53 18.69 102.04 99.83 20.3 " 1100 1000 2000 2000 10 0-0.170 5:1 10	156	2000	1000		- 7					30		0.052	13.5	8.80	52.20	23.06			10.51	105.80	99.59			$Ca_5(PO_4)_3F + CaF_2$
104 727 1258 2000 9 0-0.055 3.92:1 20 0.28 7 107 0.013 13.4 9.60 51.74 25.83 5.25 0.53 18.69 102.04 99.83 20.3 " 110 1000 2000 2000 10 0-0.170 5:1 10 4 16 118 0.020 12.0 9.7 53.28 27.24 4.73 0 14.72 5.98 99.29 99.29 0 Cas (P04)30H 113 1000 2000 2000 2000 9 0-0.173 5:1 20 4.4 22 347 0.010 6.3 53.44 29.15 2.87 0.61 14.69 100.76 99.56 9.86 Cas (P04)3F + Cas (P04	118				1						106.4			9.58	52.68	25.96	4.38		18.65		99.94		16.8	н
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	104	727	1258	2000	9	0-0.055	13.92:1	20	0.28		107	0.013	13.4	9.60	51.74	25.83	5.25	0.53	18.69		99.83		20.3	"
185 5000 1250 50 10 505 0.045 6.1 52.54 28.27 2.42 0.71 16.07 99.99 98.75 8.55 Ca ₅ (PO ₄) ₃ (F,OH 184 5000 875 50 10 644 6.0 52.66 27.90 3.27 1.00 15.37 100.20 98.85 11.72 Ca ₅ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃	110		1	1					14 1	16 38				10.5	53.28	27.24		1						Car (PO4)cOH
185 5000 1250 50 10 505 0.045 6.1 52.54 28.27 2.42 0.71 16.07 99.99 98.75 8.55 Ca ₅ (PO ₄) ₃ (F,OH 184 5000 875 50 10 644 6.0 52.66 27.90 3.27 1.00 15.37 100.20 98.85 11.72 Ca ₅ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃	113			2000						22	347		6.3		53.44	29.15	2.87		14.69	100.76	99.56		9.86	$Ca_5(PO_4)_3F + CaF_2$
185 5000 1250 50 10 500 500 50 10 644 500 875 50 10 644 5000 500 50 11.72 Ca ₅ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (PO ₄ (PO ₄) ₃ F + Ca ₅ (P	183			750	10		2.2:1	1	50	10	591				53.14	32.38			12.12	100.93	99.55			11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	182			625	- 1				50	7	553		6.1		52.44	28.27	2.42		16.07		98.75		8.55	Ca ₅ (PO ₄) ₃ (F.OH)
112 1000 2000 8 0-0.024 100:1 10 1 117 720 0.010 4.7	184		5000	875	4		1	1	50		644		6.0		52.66	27.90	3.27	1.00	15.37	100.20	98.83		11.72	$Ca_5(PO_4)_3F + CaF_2$
116				500			1	1		1 1						The same of the sa								п
111 1/ 10 1212 0.005 Triple det pain 115 1/) 10 0.55 Ca ₅ (PO ₄) ₃ F + 119 1 10	116		1	1			1			20	L210	<0.05											1	Ca ₅ (PO ₄) ₃ OH + Ca(OH) ₂
119 10	111 1/		1								1212	0.005												Triple det point
neight of the last	115 1/		1	1				1															5.00	1 CaF2 + Ca(OH)2
Lea(on/2	ן אדר		,	i	10	-	!				1210	0.001	0							- 7 Mar		'		Ca(OH)2

^{1/} Taken from the literature for 25°C. and verified.

Table 4, -- System CaO-HF-H20 at 25°C,

																			20															
	a)		Sum	14,	100, 27	> 0	Đ Đ	C G	0	0	0		Q D	cture	D O	6	0	0	0	8 0	8	C B	D C	0	69 66	B 0	0		(Ca(OH)2 +	23	0	0 8	6 0	0
	Precipitated phase		90E	13	48, 82	0	0	B D	0	0	0		0	ebye pic	0	0	8 D	0	0	0	0	6	0	0	48, 50	0	0	6	le point	CaF	0	8 0	1	0
	Precipit		%CaO	12	51, 45	C	0	0	0	0	0		0	is a De	0 C	0	D D	0	0	8 0 	0	0	0	0	51, 19	0	6	0	Dou b le		0	0 C	Са(ОН) ₂ -	0
Solid:	Liquid	phase	gr., /1t.	11	0, 316			0	0	ß G	0 0		0	There	0 0	0, 315	0	0, 122	l, 261	0° 106	0°066	0	0, 489	0	8	0,426	0, 264	8	J, 0		0	O Ü	G G	8
_			Hď	10	2, 26	2,34	2,34	2,45	2, 61		3, 21		5, 57	8, 70	8, 51	8, 60	8, 27			8,87	0	0	9 D	0		66 6	0	0	0					>11
Equilibrated	liquid phase,	mg, /lt	ĽL.	6	718,8					58,4	42,0		20°0	.85 4.∞4	15,0	17,4	16,0	16, 3	14,5	15,4	14,0	11,0	0 °6	9,5	ц, 5	11,0	10° 7	1°8	5,3		4. (2,6	3°0	% %
[iup3	liqui	E	CaO	∞	0° 30	08.0	0°30	0,40	200	4,8	5,4		10° 7	28°0	31,4	31, 3	32, 2	41,6	53, 2	71,2	102	109	178	190	206	238	267	456	711		1038	1212	1213	1213
	"Seasoning"	in days		L	30	37	30	30	30	30	30		39	30	37	17	(25	က	22	6	က	ଷ	24	တ	30	30	11	12		0	14	30	0 0
	of cryst.,	mg, /lt,	CaF ₂ per hour	9	433-32	14.6	43-32	0	0	0	Quick	mixing	939-420	79-36	2000~880		6	0		80	12	0	0	0		0	0 0	0	0		0		160	•
	G iven stoichio-	metric norm	in % CaO	5	7,4	000	21,2	36, 5	56°2	83,4	100		100	105	100		0	125	6	147	9 0	0	0	7100	0	280	370	0 G	0		0	• • • • • • • • • • • • • • • • • • • •	0	0 0 0
Reagents	Method of mixing			4	Ca(OH) HF		8	t	8.5	r	HF Ca(OH) ₂	ı	Ca(OH), -HF	HF-Ca(OH),	1		Ca(OH) o+HF+CaF o	Ca(OH),9-HF	Ca(OH)2+HF+CaF2	1	HF-Ca(OH) ₂	Ca(OH)2+HF+CaF2	3	Ca(OH)2-HF	HF~Ca(OH),	Ca(OH), -HF	3	HF -Ca(OH),	7, 5		CaFo	(CaF)	$(Ca(OH)_{\mathcal{O}}) + (CaF_{\mathcal{O}} + HF)_{\mathcal{C}}$	s take
Rea	ration	/It.	ìI.,	3	1143	1000	889	691	538	418	1000		1000	1000	1000	$(CaF_{\mathfrak{I}})$	5,0	1000	ຕິ		5183	Ø	1, 3	1000	5183	153		5183	5183)H),) +)H)5) +	of nos.
	Concentration	191	CaO	2	527	1054	527	527	527	527	1 0		1054	1294	1054		20	914	43	1200	1258	100	170	1294	1258	527	527	1258	1258			(Ca)	(Ca)	rerage (
	Serial C	no°			98			88	68	06	96	_	83	98	_	142 1/	129 1/		128 1/		124		126 1/		123	, 76	95	122			186 17	114 1/	1117	The a

1/ The solubility of Ca(OH)2 at 25°C, is taken to be 1200 mg, /lt, Ca0,

In all, we conducted and analyzed 86 lengthy experiments covering fields within a broad range of values of pH (from 6 to 12) and of equiponderant concentrations (from 103 to 0.001 mg./lt. P₂0₅, and from 0 to 790 mg./lt. F).

After the equilibrated systems used in these experiments were filtered, we conducted 231 quantitative determinations of CaO, P_2O_5 , and F in the liquid phases and 349 quantitative analytical determinations in the solid phases, not counting control determinations within the procedures of the experiments themselves.

Figure 1 shows the orthogonal projection of a three-dimensional model of the given system, made upon the vertical plane of coordinates CaO and P_2O_5 . Figure 2 gives the same projection upon the horizontal plane of the coordinates CaO and F. Figure 3 presents the system in the plane of the coordinates pH and P_2O_5 .

4. Characterization of the solid phases of the system and of the fields of their stability

The system $CaO-P_2O_5-HF-H_2O$ (isotherm 25°C.) was found to have in the fields of low concentrations of P_2O_5 seven precipitated phases, among which fluor-hydroxylapatite is a phase of variable composition. (See table 5).

5. Isomorphism of fluor-hydroxyl ions in the apatite lattice

The introduction of the fluor-ion component into the system CaO-P₂O₅-H₂O considerably changes its appearance in the alkaline fields as well as the composition of bottom sediments because the fluor-ion enters into the crystal lattice of hydroxylapatite, forming first of all a wide

Figure 1.--System of the equilibria of CaO-P₂O₅-HF-H₂O at 25^OC in the neutral and alkaline fields. Orthogonal projection upon the coordinate plane CaO-P₂O₅ mg/liter. Symbols are the same for figure 2.

Precipitated phases:

- 1. CaHPO₄ · 2H₂O (monetite) Ca₅(PO₄)₃F (fluorapatite) 2. $Ca_5(PO_4)_3F + CaF_2$ Ca₃P₂O₈ · H₂O (tricalcium-phosphate) (fluorapatite + fluorite) 3.
- Ca₅(PO₄)₃OH (hydroxylapatite) 4.
- Ca₅(PO₄)₃(F,OH) (fluorhydroxylapatite) CaF3 (fluorite) 7. • Ca(OH)3 (calcium hydroxide)

Figure 2.--System CaO-P₂O₅-HF-H₂O at 25 $^{\circ}$ C. Projection upon the coordinate plane CaO-F mg./liter.

Figure 3.--System CaO-P₂O₅-HF-H₂O in the coordinates pH-P₂O₅ at 25° C.

- 1. tricalcium-phosphate
- 2. hydroxylapatite
- 3. fluor-hydroxylapatite
- 4. fluorapatite

Table 5, --Precipitated phases of the system CaO-P205-HF-H20 (isotherm 25°C,) and the fields of their stability

1	ı						25					
uid phase, mg, /1t, p H	≪6 , 5	from 6, 5 to 7, 1	<i>√</i> 7°1	Ŋ7.1	≫7.1				7,1	8 0	\$ 0	Q B
LITY ia of the liq F	0	ð 8	6 0 0 0	from 0 to	from 1, 5	(Point E)	from 2,5 (Point F) to 16-18	0		0	5	2, 8 - 3, 0
FIELDS OF STABILITY Composition of the equilibria of the liquid phase, mg, /lt, CaO P ₂ 0 ₅ F pH	>82	from 82 to 5	from 5 to 0, 30 from 0, 30 to 0, 001	same	r	;		0	വ	0,005	0°001	0
FI Composition CaO	>40	from 40 to 12	12-6 6-1200	12-6	from 9	(Form E)	ѕаше	1212	12	1210	1200	1213
Points on the	0	0 0	from 108 to 137 (Fig. 3)	from AD to BC	from DE to CF	,	from G to H	111	108	Point B		
Precipitated phases	Diphosphate, hydrous (brushite)	CaHPO $_4 \cdot ^2$ H $_2^0$ Tri-calcium phosphate Ca $_3$ P $_2^0$ 8 \cdot H $_2^0$	Hydroxylapatite Ca ₅ (PO ₄) ₃ OH	Fluor-hydroxylapatite	Normal fluorapatite	C45(04)31	Fluorite CaF ₂	Calcium hydroxide Ca(OH) ₂ TRANSITION POINTS	C agp $_{98}^{9}$ · H ₂ O + Ca ₅ (PO ₄) $_{3}$ F, OH) point of experiment	$Ca_{5}(PO_{4})_{3}OH + Ca(OH)_{2}$	$Ca_5(PO_4)_3F + CaF_2 + Ca(OH)_2$	CaF ₂ + Ca(OH) ₂
Serial nos,	-	63	က	4	Ŋ		œ	L	∞	6	10	11

field of isomorphic mixtures (fluor-hydroxylapatite), as shown on Figure 2, field ABCD.

With a greater increase of the concentration of fluorine in the balanced liquid phases, up to a content of 1 to 7 mg./lt. (namely 1 mg./lt. F in the extreme right alkaline fields, and 7 mg./lt. F in the almost neutral, left fields on Fig. 2), the content of fluorine in the bottom sediments also increases and reaches the content of the normal sediments of fluorapatite, with a ratio (% F : % P_2O_5) x 100 = 8.93 (Fig. 2, field CDEF).

A further increase of the content of fluorine in the system at first does not result in the formation of new precipitated phases, until the balanced liquid phase has reached concentrations up to 2.5 mg./lt. of fluor-ion in the extreme alkaline fields and concentrations up to 17 mg./lt. F in the extreme left neutral fields (Fig. 2, line EF). From this moment, however, fluorite begins to settle upon the precipitated phases, together with fluorapatite, forming the field EFHG of the double sediments $Ca_5(PO_{li})_3F \ddagger CaF_2$.

Finally, with a further increase of fluor-ion content in the liquidus and a decrease of P_2O_5 , a narrow field is formed by the sediments of fluorite alone (Fig. 2, line GH).

For a fuller clarification of the regularities governing the process of fluoridation of hydroxylapatite, we have summarized in Table 6 and Figure 4 experimental data on the coefficients of fluoridation, the interphase distribution of fluorine, and the double points $Ca_5(PO_4)_3F + CaF_2$. These data are taken from experiments made within the fields having values $pH = 8.0 \pm 0.5$, 9.5 ± 0.5 , and photometric 100, and photometri

Table 6.--The extent of fluoridation of hydroxylapatite in its dependence upon the concentrations F and CaO in equilibrated solutions (t = 250C.)

(Curve I on fig. l_s for pH = 8.0 $\frac{1}{2}$ 0.5)

	1	-					-	27						
PHASE			Sediments Car(PO ₄) ₂ (F,OH) of hydroxyl- fluorapatite					Sediments close to normal $\operatorname{Cag}(\operatorname{PO}_{\downarrow})_{\mathfrak{F}}$ fluorapatite			2-phase	2-phase sediments Ca _∑ (PO _L) ₃ F∔CaF ₂		
	Coefficient of inter-phase distribution %F in solid phase %F in liquid phase		12500	18750 25000 38000	26680	27330 20430		5000 1,61,6	4035 4559	4,320		:1	1 2	
	% of fluoridatic 100.k 8.93		0,56	4.37 7.05 1.37	35,2	51.0		1,301	104.1	10).8		8	B #	
	%P205 %F 100 1/		0,13	0,00	3,14	4.55 4.89		8.85	9,30 8,60	9:36	12.5	77.	19, 152, 131)	
		%P205	39.63	39,52	38.16	36.01. 39.29		33.92	37.52	34.59 28.58	36.08	37.21	130, 149	
		<i>%</i>	0,03	0 0 0 1 % 9	1,20	1,64		3.00	3,10	0 1	4,50	7,7 7,0 7,0 7,0	150, 154,	
		ŢŢ.	†0°0	0000	0,45	76°0		0 7.	, 00 cm	ř.ů	15.7	14.6 77.0	- •	
AND DESCRIPTION OF THE PROPERTY.	D PHASE	P205	05.30	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.050	0.080	acter Carcan Carcan Carcan	0,090	0,040	0,036	0.10	0,10	٥	
	TIQUID ""	CaO	0°2	2002	8,0	6,6 14,0		14.1	27.9	79.5 144.4	15,6	17°4	j	
		Нď		7:30	e e .	8,00	The same of the sa	88.11		¢ •	7.85	8.05		
	Serial	no。	137	11. 32.	72	132	-	80 103	120	101	ĹΫΙ	143	·	

the "fluorphosphorus coefficient." call we will further 1/ The quantity %F %P205 Fluor-phosphorus coefficient of sediment

Figure 4.--Diagram of the isomorphism of hydroxyl-fluor-ions in the lattice of apatite (isotherm of 25° C.).

Figure 4 was plotted as follows: On the abscissa we measured the equilibrated content of fluor-ion in the solution in units of mg. of fluorine per liter; the scale of the abscissa is $10 \sqrt{\text{mg./lt. F.}}$. On the ordinate we plotted the corresponding percentage content of fluorine in the precipitated phases, expressed in units of the coefficient (% F: % P₂0₅) relative to % P₂0₅. This coefficient k for normal fluorapatite is $(3.77 \text{ %F}):(42.22 \text{ % P₂0₅) = 0.0893$. The scale for values on the ordinate in Figure 4 is $10 \sqrt{100.\text{k}}$ or $10 \sqrt{100(\text{%F}: \text{%P₂0₅})}$.

An analysis of the curve of inter-phase distribution of fluorine in the system CaO-P₂O₅-HF-H₂O shows that an augmentation of the content of fluor-ion in the solutions of the system is accompanied by a very rapid increase of its content in the precipitated phase. The curve of the isomorphic replacement of the hydroxyl-ion by fluorine has the shape of a hyperbola (curve I, Fig. 4).

When a 100-percent fluoridation is reached, the curve of sediments of normal fluorapatite becomes a segment of a straight line disposed parallel to the abscissa axis, until the content of fluorine in the solution attains a certain limit-value which marks the start of the precipitation of fluorite CaF_2 . Beginning with the latter moment a further addition of fluor-ion to the system ceases to increase the balanced concentration of fluorine in the solution, and the entire fluorine residue settles in the form of CaF_2 , producing a two-phase sediment $Ca_5(PO_4)_3F + CaF_2$. This moment of transition appears on the diagram as a sharp break in the curve of fluorine distribution and its change into a straight vertical line.

It is relevant here to cite some data from the papers of Professor

D. P. Grigor'ev (1935 and others) on the synthesis of magnesial-ferric micas,

whose hydroxyl group can be fully replaced by fluorine. We give the isomorphic

end-series of the micas of this type, studied synthetically.

Lepidomelane..... KFe₃··Fe···Si₃O₁₀(OH,F)₂.

D. P. Grigor'ev (1935) notes correctly: "in artificial micas the fluorine must take the places of the hydroxyl group, as is actually confirmed by X-ray investigations...." (p. 350).

6. Geologic-genetic interpretation of the fluorapatite system

In sea basins of normal salinity there is a widespread process of fluorine fixation, consisting in the deposition of fluorapatite in areas of phosphatic shelves; it is examined in detail in the paper of A. V. Kazakov (1939). This process of phosphorite formation is the first stage of the separation of fluorine in the cycle of development of sea-bottom lithogenesis.

The average content of phosphorus and fluorine in natural waters is given in Table 7.

It is interesting to express the process of fluorapatite sedimentation, with its fixation of fluorine, in the concrete form of an average annual balance-sheet based on the tonnage and salt mass of world-wide yearly river-water discharge. We give average figures.

Annual evaporation from the entire hydrosphere: 428,000 km³. (according to Knipovich, 1938)

Average annual quantity of precipitation over dry land: 106,822 km³.

Annual discharge of river waters into seas and oceans: 26,700 km³.

Annual emission, in solution, by river waters into the world ocean: P205.....about 1 million tons
F.....about 5.3 million tons.

Table 7Average	content	of phosphorus	and	fluorine	in	natural
	waters	(Vinogradov.]	L938`)		

	P	205	H. The state of th						
	Clark %P	mg./lt. P ₂ 05	Clark %F	mg./lt.F					
A. SEA WATERS (WORLD OCEANS)									
World oceans	5 _{+0°10} -6	0.114	1.0:10-4	1,0					
	B. RIVER WATERS								
Volga Dnepr Don	es.€0 es.€0 es.00	900 900 900 CCD 900 GCD	යා අත කා යා	0.10-0.12 0.16-0.17 0.30					
Aver a ge	 4 50	0°0†	oso (sta)	0.20					

If we take for the basis of calculations the readjustable equilibrium of salt composition and salt mass in the world's oceans, established during geologic time, as set forth by V. I. Vernadskii and others, we can consider that, on the average, all this mass of phosphorus, namely, about 4 million tons of phosphorites (taking provisionally their content to be 25 percent P_2O_5) is sedimented annually from the water mass of the world-oceans upon respective "phosphate shelves" in one or another degree of concentration and dispersion.

With the given chemosedimentation of phosphorites, these minerals capture (for saturating with fluorine the apatite lattice of the phosphate substance of phosphorites) about 90 thousand tons of fluorine, which constitutes, however, only about 1.7 percent of its annual discharge by river waters.

Thus, the larger part of fluorine excess is concentrated in the world's oceans up to an average content of 1 mg./lt. A further increase in the concentration of fluorine is limited by the removal of fluorine from the world's oceans under conditions of "relict" basins, mainly in the form of fluorite, which reminds us of the fate of the other haloids, chlorine and bromine.